Biophysical Analysis of Biosignals: Theoretical Background

K. Kozlíková
Biosignal

- During the process of diagnosis, it is necessary to obtain information about the patient's condition.
- Information about functioning of an organism is encoded in its analogue manifestation.
- Material carrier of the information is a signal.
- **Biological signal** (biosignal) is any material manifestation of information on an investigated biological system.
- **Biosignals** improve the characteristic of a given system, therefore, they form the basis of all diagnostic methods.
Displaying and recording measured values

- Processing of biosignals
 - Receiving biosignal
 - Amplification and pre-processing of signals
 - Displaying and saving of measured values of biosignals
 - From the point of view of form
 - Numerical
 - Pictorial
 - Graphical
 - From the point of view of archiving period
 - Transient
 - Permanent
Analysis of biosignals

- From the point of view of output
 - Qualitative
 - Visual
 - The output is a narrative description
 - Quantitative
 - Measurement of physical quantities
 - The output are numbers

- From the point of view of signal complexity
 - Automatic
 - Particularly irregular, complex, non-repetitive signals
 - Manual
 - Simple, repetitive signals

Therefore, during practical training analysis of an ECG record
Biophysical analysis of an electrocardiogram (1)

- Electrocardiographic curve
 - Graphical record of the electric activity of the heart (permanent)
 - Relatively simple graph of the dependence of electric voltage on time
 - Quasi-periodic (almost periodic) curve
 - A part of the record repeats regularly (or with only minor changes)

An example of an ECG record of one lead.
Source: author's archive
Biophysical analysis of an electrocardiogram (2)

- Biophysical analysis of an ECG curve
 - Simple
 - Amplitude
 - Measurement of height of individual deflections
 - Time
 - Measurement of duration of individual parts of the ECG curve
 - Frequency
 - Establishing (mean) heart rate
 - More complicated
 - Related to values obtained from simple analysis
 - Construction of electric heart axis
 - Analysis of heart rate variability
 - Using special software
 - Spectral (frequency) analysis of ECG
Biophysical principle of the electrocardiogram

- The heart functions as a pump – it expels blood into the circulatory system.
- The function of the piston is represented by the contracting ventricular muscle.
- Coordination of contraction is provided by the sequence of action potentials – sources of electric current – electric heart field is created.
- The heart as a source of electric current is placed in the human body – electric conductive medium – three-dimensional volume conductor that modifies the electric heart field.
- Electric heart field is registered at the body surface as electric voltage – potential difference – in form of electrocardiographic curves.
Physical comment - electric voltage

Electric voltage

- Physical quantity
 - Expresses the difference of the electric potential between two points
 - Represents the energy needed to displace the electric charge between these two points in a certain electric field
 - Symbol: U
 - SI unit: Volt [V]

- Is related to the electric current I [A] (movement of electrical charges) in agreement with Ohm’s law
 \[U = R \cdot I \]

- R: electric resistance [Ω]

An example of a simple electric circuit to measure the voltage using a voltmeter.
Electrocardiography – basic terminology

- **Electrocardiography**
 - A method of detection, recording and analyses of action potentials of the heart (as being transferred to the body surface)

- **Electrocardiogram**
 - Graphical output of an electrocardiograph that records the electric activity (changes of electric voltage) of the heart during time

- **Electrocardiograph**
 - A device used to record the electric activity of the heart
Electrocardiographic leads

- A lead
 - Combination of two conductors and their electrodes, that form with the measuring device (electrocardiograph) a closed electric circuit
 - Bipolar
 - Two active (equivalent) electrodes
 - Unipolar
 - An active (different) and a reference (indifferent) electrode

Electrocardiograph and usually used electrodes for standard examination.
[Cit. 4. 4. 2011] Available at: http://produkt.sluzby.cz/elektrokardiograph-8738
Bipolar leads – Einthoven triangle

- Electric activity of heart
 - Electric dipole (about 90%)
- Heart position
 - In frontal plane
 - In the middle of an equilateral triangle
- Position of electrodes
 - Right hand (R)
 - Left hand (L)
 - Left foot (F)
- Symbols of leads (bipolar)
 - I: \(V_I = \Phi_L - \Phi_R \)
 - II: \(V_{II} = \Phi_F - \Phi_R \)
 - III: \(V_{III} = \Phi_F - \Phi_L \)
- In each instant is valid for voltage \(V_i \) (Einthoven's rule)
 \[V_I + V_{III} = V_{II} \]
 \(\Phi_i \) : electric potential on the \(i^{th} \) electrode
Wilson central terminal

- Reference electrode pre unipolar leads
- Connection through large electric resistances
 - The total current in the Wilson central terminal has to be zero
 - 1st Kirchhoff law

\[I_R + I_L + I_F = 0 \]

\[\frac{\Phi_{WS} - \Phi_R}{5000} + \frac{\Phi_{WS} - \Phi_L}{5000} + \frac{\Phi_{WS} - \Phi_F}{5000} = 0 \]

- \(\Phi_i \): potential at \(i^{th} \) electrode
- Potential at the Wilson central terminal
 - Average potential of limbs

\[\Phi_{WS} = \frac{\Phi_R + \Phi_L + \Phi_F}{3} \]
Unipolar leads - limbs

- Formation
 - Disconnection of one electrode from the Wilson central terminal
- Names and symbols of unipolar leads
 - Augmented (amplified) – aVR, aVL, aVF
 - According to the disconnected electrode
 - Goldberger leads

Unipolar leads - chest

- **Standard positions – six leads:**
 - $V_1, V_2, V_3, V_4, V_5, V_6$
 - Standard, well defined positions in the 4th and 5th intercostal space

- **Next used locations:**
 - V_7
 - Posterior axillary line
 - V_3R, V_4R, V_5R, V_6R
 - „Mirror image“ V_3, V_4, V_5, V_6

Chest leads and their standard positions.
Standard 12-lead electrocardiogram (1)

- Displayed are leads I, II, III, aVR, aVL, aVF (left) and V₁ to V₆ (right)
- At the beginning of every lead is the calibration deflection
- Below the curves is paper speed, voltage calibration, registered frequency band of signals and the heart rate
- Source: author's archive
Standard 12-lead electrocardiogram (2)

- Displayed are the leads I, II, III, aVR, aVL, aVF (left) and V₁ to V₆ (right)
- At the beginning of the limb lead is a calibration deflection valid also for the chest lead
 - For leads V₅ and V₆ an appropriate calibration was used – the curves overlap
- Time calibration is missing
- Source: author’s archive
Basic terminology of an ECG curve

TP segment is used as zero isoelectric line (zero voltage).

Electrocardiographic terminology. [Cit. 30. 3. 2011] Available at: http://nursingpub.com/12-lead-ekg-explained-part-1
Polarity and height of deflection

- **Polarity of deflection**
 - Depends on mutual position of the depolarisation wave and the recording electrode

 ![Diagram showing basic forms of QRS complex according to polarity](http://drkupe.blogspot.com/2011/03/ecg.html)

- **Height of deflection**
 - Depends on mutual distance of the depolarisation wave and the recording electrode
 - It is the higher the closer they are

- **Depolarisation wave**
 - Boundary between polarised and depolarised areas, the direction of depolarisation
Positive and negative waves

- Always positive:
 - Wave R

- Always negative:
 - Wave Q
 - Precedes the R wave
 - Wave S
 - Follows the S wave

- Positive or negative:
 - P wave
 - T wave

Some possible shapes of QRS complex
Calibration of the graphic record (1)

- Electrocardiographic curve is recorded onto a special millimetre paper

- Time calibration – paper speed
 - Standard speed
 - 25 mm/s
 - 1 mm ⇔ 0.04 s
 - 5 mm ⇔ 0.2 s
 - Slower speed (for detailed analysis)
 - 50 mm/s
 - 1 mm ⇔ 0.02 s
 - 5 mm ⇔ 0.1 s
 - Faster speed (for heart rate analysis)
 - 10 mm/s
 - 1 mm ⇔ 0.1 s
 - 5 mm ⇔ 0.5 s
Calibration of the graphic record (2)

- Voltage calibration
 - Standard
 - 10 mm ⇔ 1 mV
 - 1 mm ⇔ 0.1 mV
 - For low deflections
 - 20 mm ⇔ 1 mV
 - 1 mm ⇔ 0.05 mV
 - For high deflections
 - 5 mm ⇔ 1 mV
 - 1 mm ⇔ 0.2 mV

Examples of different voltage calibration for limb leads (10 mm/mV) and for chest leads (5 mm/mV).
Source: author's archive
Heart rate (1)

- The pressure wave that passes during the heart activity through the arterial part of the vascular system, is called heart rate (pulse) and is palpable on the arteries.
- This series of waves corresponds to the heart rate and frequency.
- Measurement of heart rate
 - Palpation method – „on-line“
 - Common way
 - Is considerably subjective
 - Based on an electrocardiographic curve – „off-line“
 - Duration of RR interval
 - More exact measurement

\[
SF \ [\text{min}^{-1}] = \frac{60}{RR \ [s]}
\]
Heart rate (2)

- Heart rate of a healthy person is in average 70 beats/min
 - Physiologic values are 60 beats/min to 90 beats/min
 - Bradycardia – less than 50 beats/min
 - Tachycardia – more than 100 beats/min
- Values can change depending on
 - Age
 - Body size
 - Cardiac problems
 - Physical activity
- In persons breathing normally, the heart rate changes
 - Sinus arytmia - physiologic phenomenon
 - Increases during inspiration
 - Decreases during expiration
Electrical heart axis (1)

- Represents the dominant direction of propagation of heart activation (not the heart position)
- Direction (orientation) of a vector, that is the sum of all partial vectors during depolarisation
- Mean electric heart vector
- Can be evaluated
 - In a particular time instant (1, 2, 3, 4)
 - During a particular time interval (1+2+3+4)
 - During QRS complex
 - During T wave
 - During P wave
Electrical heart axis (2)

- Usually evaluated in the frontal plane
- Based on
 - Einthoven triangle
 - **Hexaxial reference (Bailey) system**
 - Sides of the Einthoven triangle are shifted into its middle

Axial reference system in frontal plane.
[Cit. 30. 3. 2011]. Available at: http://www.cvphysiology.com/Arrhythmias/A013a.htm
Electrical heart axis (3)

- Is expressed as an angle measured in degrees from the horizontal axis directed from right to left
 - Types of electrical heart axis
 - Normal
 - -30° to 100°
 - Left axis deviation
 - -90° to -30°
 - Right axis deviation
 - 100° to 180°
 - Extreme right axis deviation
 - -90° to -180°
 - Position of electrical heart axis
 - Horizontal
 - -30° to 30°
 - Vertical
 - Around 90°
 - Intermediate
 - 30° to 60°

Electrical heart axis. [Cit. 30. 3. 2013] Available at: http://www.blobs.org/science/article.php?article=87
Electrical heart axis (4)

- Simple visual evaluation based on amplitudes of limb leads
 - I, II, III
 - aVR, aVL, aVF
- Basic principle of construction
An ECG ruler – a tool for ECG analysis

- Different versions
 - Always contain
 - Millimetre scale
 - Deflections
 - Time intervals
 - Heart rate scale
 - Time calibration

- May contain
 - Conversion of values
 - Hexaxial system for electrical heart axis evaluation
 - Protractor
 - ECG curve
 - Other data
Used and recommended literature

Lectures available at MEFANET portal, English version, part Biophysics (http://portal.fmed.uniba.sk/):
K. KOZLÍKOVÁ: Overview of Biological Signals.
K. KOZLÍKOVÁ: Active Electric Biosignals I.
K. KOZLÍKOVÁ: Active Electric Biosignals II.

J. MALMIVUO, R. PLONSEY: Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields.