The Body and pH

- Homeostasis of pH is tightly controlled
- Extracellular fluid = 7.4
- Blood = 7.35 – 7.45
- < 6.8 or > 8.0 death
- Acidemia = below 7.35
- Alkalemia = above 7.45
Small changes in pH can lead to major disturbances

- Most enzymes function only with narrow pH ranges
- Acid-base balance can also affect electrolytes ($\text{Na}^+\text{, K}^+, \text{Ca}^{2+}\text{, Cl}^-$)
- Can also affect hormones, receptors, functional proteins
The body produces more acids than bases

- Acids are taken in with foods
- Acids are produced by metabolism of lipids and proteins
- Cellular metabolism produces CO_2.

$$CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$$

Control of Acids

1. **Buffer systems**

 Take up H^+ or release H^+ as conditions change

 Buffer pairs – weak acid and a base

 Exchange a strong acid or base for a weak one

 Results in a much smaller pH change

2. **Respiratory system**

3. **Kidney excretion**
Bicarbonate buffer

- Sodium Bicarbonate (NaHCO$_3$) and carbonic acid (H$_2$CO$_3$)
- Maintain a 20:1 ratio: HCO$_3^-$: H$_2$CO$_3$

\[
\text{HCl} + \text{NaHCO}_3 \leftrightarrow \text{H}_2\text{CO}_3 + \text{NaCl}
\]

\[
\text{NaOH} + \text{H}_2\text{CO}_3 \leftrightarrow \text{NaHCO}_3 + \text{H}_2\text{O}
\]

Phosphate buffer

- Major intracellular buffer
- Buffer in kidneys

\[
\text{H}^+ + \text{HPO}_4^{2-} \leftrightarrow \text{H}_2\text{PO}_4^{-}
\]

\[
\text{OH}^- + \text{H}_2\text{PO}_4^- \leftrightarrow \text{H}_2\text{O} + \text{HPO}_4^{2-}
\]

Protein Buffers

- Includes hemoglobin, work in blood and ISF
- Carboxyl group gives up H$^+$
- Amino Group accepts H$^+$
2. Respiratory mechanisms

- Exhalation of carbon dioxide
- Powerful, but only works with volatile acids
- Doesn’t affect fixed acids like lactic acid
- $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- Body pH can be adjusted by changing rate and depth of breathing

3. Kidney excretion

- Can eliminate large amounts of acid
- Can also excrete base
- Can conserve and produce bicarbonate ions
- Most effective regulator of pH
- If kidneys fail, pH balance fails
ACID-BASE BALANCE - PHYSIOLOGIC STATE

\[\text{pH} = \text{pK} + \log \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \]

Tissue

- \(\text{R-COOH} \)
- \(\text{Na}^+ \), \(\text{HCO}_3^- \)
- \(\text{H}_2\text{O} \)

Lungs

- \(\text{CO}_2 \)
- \(\text{CA} \)

Blood

- \(\text{Na}^+ \), \(\text{HCO}_3^- \)
- \(\text{H}_2\text{CO}_3 \)
- \(\text{CO}_2 \)
- \(\text{H}_2\text{O} \)

Kidney

- \(\text{Na}^+ \), \(\text{R-COOH} \)
- \(\text{HCO}_3^- \)
- \(\text{CO}_2 \)
- \(\text{H}_2\text{O} \)

Urine
Rates of correction

- Buffers function almost instantaneously
- Respiratory mechanisms take several minutes to hours
- Renal mechanisms may take several hours to days
Acid-Base balance disorders

- pH < 7.35 acidosis
- pH > 7.45 alkalosis
- The body response to acid-base imbalance is called **compensation**
- May be **complete** if brought back within normal limits
- **Partial compensation** if range is still outside norms.
Acidosis

- Principal effect of acidosis is depression of the CNS through ↓ in synaptic transmission.
- Generalized weakness
- Deranged CNS function the greatest threat
- Severe acidosis causes
 - Disorientation
 - coma
 - death

Alkalosis

- Alkalosis causes over excitability of the central and peripheral nervous systems.
- It can cause:
 - Nervousness
 - muscle spasms or tetany
 - Convulsions
 - Loss of consciousness
 - Death
Compensation

- If underlying problem is metabolic, hyperventilation or hypoventilation can help: respiratory compensation.
- If problem is respiratory, renal mechanisms can help: metabolic compensation.
Respiratory Acidosis

- **Carbonic acid excess** caused by blood levels of CO_2 above 45 mm Hg.
- **Hypercapnia** - high levels of CO_2 in blood
- Chronic conditions:
 - Depression of respiratory center in brain that controls breathing rate - drugs or head trauma
 - Paralysis of respiratory or chest muscles
 - Emphysema

- **Acute conditions:**
 - Adult Respiratory Distress Syndrome
 - Pulmonary edema
 - Pneumothorax

Compensation for Respiratory Acidosis

- Kidneys eliminate hydrogen ion and retain bicarbonate ion
RESPIRATORY ACIDOSIS

\[\text{pH} = pK - \log \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \]

compensation:
- \(\uparrow \text{HCO}_3^- \)
- \(\uparrow \text{H}^+ \) secretion

TISSUE

\(\text{R-COOH} \)

\(\text{H}_2\text{O} \)

\(\text{CO}_2 \)

hyperventilation

LUNGS

\(\text{H}_2\text{O} \)

\(\text{CO}_2 \)

\(\text{CA} \)

BLOOD

\(\text{Na}^+ \text{HCO}_3^- \)

\(\text{H}_2\text{O} \)

\(\text{Na}^+ \text{HCO}_3^- \)

\(\text{H}_2\text{CO}_3 \)

\(\text{Na}^+ \text{HCO}_3^- \)

KIDNEY

\(\text{Na}^+ \text{HCO}_3^- \)

\(\text{H}_2\text{O} \)

\(\text{CO}_2 \)

\(\text{CA} \)

\(\text{H}_2\text{CO}_3 \)

URINE

\(\text{Na}^+ \text{HCO}_3^- \)

\(\text{H}_2\text{CO}_3 \)
Respiratory Alkalosis

- Carbonic acid deficit
- \(pCO_2 \) less than 35 mm Hg (hypocapnea)
- Most common acid-base imbalance
- Primary cause is hyperventilation

- Conditions that stimulate respiratory center:
 - Oxygen deficiency at high altitudes
 - Pulmonary disease and Congestive heart failure - caused by hypoxia
 - Acute anxiety
 - Fever, anemia
 - Early salicylate intoxication
 - Cirrhosis
 - Gram-negative sepsis

Compensation of Respiratory Alkalosis

- Kidneys conserve hydrogen ion
- Excrete bicarbonate ion
RESPIRATORY ALKALOSIS

\[\text{pH} = \text{pK} + \log \frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \]

compensation \[\downarrow \text{HCO}_3^-\]

excretion by kidney

\[\text{CO}_2 \rightleftharpoons \text{CO}_2 \]

\[\text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{O} \]
Metabolic Acidosis

- **Bicarbonate deficit** - blood concentrations of bicarbonate below 22mmol/L
- **Causes:**
 - Loss of bicarbonate through diarrhea or renal dysfunction
 - Accumulation of acids (lactic acid or ketones)
 - Failure of kidneys to excrete H+

Compensation for Metabolic Acidosis

- Increased ventilation
- Renal excretion of hydrogen ions if possible
- K^+ exchanges with excess H^+ in ECF
- (H^+ into cells, K^+ out of cells)
METABOLIC ACIDOSIS

\[pH = pK + \log \frac{[HCO_3^-]}{[H_2CO_3]} \]

Compensation: ↓ HCO_3^- (hyperventilation)

↑ HCO_3^- (kidney)
a) Metabolic balance before onset of acidosis

\[\text{H}_2\text{CO}_3 : \text{Carbonic acid} \]
\[\text{HCO}_3^- : \text{Bicarbonate ion} \]
\[(\text{Na}^+ \cdot \text{HCO}_3^-) \]
\[(\text{K}^+ \cdot \text{HCO}_3^-) \]
\[(\text{Mg}^{++} \cdot \text{HCO}_3^-) \]
\[(\text{Ca}^{++} \cdot \text{HCO}_3^-) \]

b) Metabolic acidosis

\[\text{HCO}_3^- \text{ decreases because of excess presence of ketones, chloride, or organic acid ions} \]

Primary change

- pH — decreases
- \(\text{PCO}_2 \) — no change
- \(\text{HCO}_3^- \) — decreases

Primary compensation

\[\text{HCO}_3^- + \text{H}^+ \rightarrow \text{H}_2\text{CO}_3 \]

0.75 : 10

Body’s correction

- Acidic urine
- Kidneys conserve \(\text{HCO}_3^- \) and eliminate \(\text{H}^+ \) ions in acidic urine

Hyperactive breathing to “blow off” \(\text{CO}_2 \)

d) Therapy required to restore metabolic balance

Lactate

Lactate-containing solution

Lactate solution used in therapy is converted to bicarbonate ions in the liver