Methods in pathology
Basic histological techniques

Dentistry
Department of pathology
Medical faculty Comenius University
PATHOLOGY (pathos + logos)

- scientific study of **structural** and **functional** changes of diseased tissues

- studies changes in normal **anatomy, histology** and physiology (pathophysiology)
PATHOLOGY (pathos + logos)

- studies **morphologic manifestation** of a disease
Diagnostic methods in pathology

1. Autopsy
2. Biopsy
3. Cytology - classic cytology, cytogenetic testing
4. Diagnostic molecular pathology + other diagnostic methods
5. Experiment
Autopsy – aims?

- determination of the **cause of death**
- detection of other / unverified **diagnoses**
- verification of adequacy of **diagnostic** and **therapeutic** procedures
- **education** – doctors (frequently overlooked diagnoses, detection of new diseases, study of disease epidemiology...) and students
AUTOPSY
regulated by

Act no. 581 /2004 Coll.
on health insurance companies, healthcare supervision and on the amendment and supplementing of certain laws, as amended

section 48 – Conduction of an autopsy
AUTOPSY – why?

• if the **cause of death is unknown** (confirmation of a disease / diagnostic / therapeutic procedure)
• the **diagnosis is not certain** (unverified malignant tumors, verified malignant tumors of unknown origin – tumor e loco ignoto)
• if the death is related to a **surgery / general anesthesia** (mors in tabula)
• if **iatrogenic damage** is suspected
• if a severe **infectious disease** is suspected
• **sudden death**
• organs collected for **transplantation**
• suspicion of **inadequate health care**
• ...
• ...
AUTOPSY - process

- **external** examination → **internal** examination
- **organs** in complexes
- determination of **cause of death** → autopsy **protocol**
AUTOPSY - process

- during autopsy: **samples** of tissue for histologic evaluation
- **histologic diagnosis**
- adjustment of diagnoses, conclusion
Biopsy – aims?

- tissue examination during a patient’s *lifetime*
Biopsy

• aim: **determination of diagnosis** – needed for application of adequate therapy

• any tissues taken from the body for diagnosis of a disease **must be processed** in the histological laboratory to produce **microscopic slides** that are analyzed in the microscope
Biopsy

- standard way of processing the tissue (order of certain steps):

1. labeling
2. fixation
3. macroscopic description
4. dehydration, cleaning, impregnation
5. embedding
6. sectioning
7. staining
Biological material

0. LABELING
- the material should be adequately labeled
 - name
 - age
 - insurance information
 - clinical diagnosis
 - anamnesis
 - symptoms of disease
Biological material

- **autolysis** (enzymatic decomposition of tissues -> cellular destruction -> great changes in the structure)
- **microbiological spoilage** – by penetration of bacteria and microbiological decomposition (starts with autolysis, these processes are parallel)

1. **FIXATION**

- to kill the bacteria and to stop the enzymatic processes in the cells - stop the autolytic changes
- the purpose of fixation is **to preserve tissues permanently** in as **life-like** state as possible
- should be carried **out as soon as possible** after removal of the tissues
Fixation - types of fixatives

1. chemical modification (formalin)
 • variety of fixatives are available for use (depending on the type of tissue and features to be demonstrated)

2. physical modification (freezing)
Fixation – chemical types of fixatives

- major groups of fixatives, classified according to mechanism of action:

Aldehydes (formaldehyde, glutaraldehyde)
- by formation of cross-linkages in the proteins (between lysine residues).
- does not harm the structure of proteins greatly -> **antigenicity is not lost**, formaldehyde is good for immunoperoxidase techniques.

Alcohols (methyl alcohol, ethyl alcohol)
- **protein denaturation**
- very good for cytologic smears because they act quickly and give good nuclear detail

Oxidizing agents (permanganate fixatives, osmium tetroxide).
- **cross-linkages**, but cause **extensive denaturation**.
- used in specialized applications – electron microscopy

Mercurials, picrates fix tissue by an unknown mechanism
Fixation – physical types of fixatives

Frozen Samples

• tissues can be preserved by freezing them directly (snap freezing) at -80°C in a cold environment / by immersing in liquid nitrogen.
• freezing makes tissue solid enough to section with microtome (in a cryostat)
• tissue sections are put on a glass slide and are then ready for staining

• advantages:
 1. biological and enzymatic activities of proteins do not change during this process -> suitable for demonstration of enzymes or substances normally washed out (detected by histochemical met.), in techniques for recovery of DNA, mRNA, and proteins
 2. takes only several minutes -> intraoperative diagnostic procedures to guide the surgeon (diagnosis is made quickly)
Gross Examination

- describing the specimen and

- placing all of it / parts of it into a small plastic cassette which holds the tissue while it is being processed to a paraffin bloc

 - when a malignancy is suspected - the specimen is often covered with ink with the aim to mark the margins of the specimen
Tissue in fixative solution (formalin) – FURTHER PROCESSING

1. Dehydratation – removing the water and fixative solution (ethanol, methanol,...) - In series of concentrations 70%..90%..100%

2. Clearing – removing of the dehydrant with a substance that will be mixable with the embedding medium (paraffin). (xylen, toluen, chloroform,...)

3. Impregnation – embedding medium (paraffin)

tissue impregnated in embedding medium can be embedded
Dehydratation and clearing

- 10% formaline
- 70% ethanol
- 95% ethanol
- 100% ethanol
- +Xylen
- Xylen
- Xylen
- Paraffin
- Paraffin
Embedding

Aim: processing into a form from which the thin microscopic sections can be prepared.

- tissue can’t be cut right away -> it has to be embedded in a suitable medium
- the medium should be **solid**, but also **cut-able**
- embedding media must **fill all spaces within the tissue** to support cellular components adequately during microtomy
- must be **elastic** enough to recover sectioning deformation

...advantages of PARAFFIN (similar in density to tissue, adequate viscosity and melting point, can be sectioned at anywhere 3-10 um)
Embedding

- impregnated tissue is put in a metal form -> embedded in liquid warm paraffin
- cools down -> paraffin block with embedded tissue
Sectioning

- samples are cut into sections that can be placed on a slide
- microtome and ultramicrotomes
Drying

Storage

→

Prepared for staining

Deparaffinisation

(paraffin is only used as a medium needed for sectioning, has to be removed before staining)
Staining

- **Acidofile stains**
 - *Eosin, Azokarmin, Anilin blue*
 Substrates: Cytoplasm, intercellular substances,...

- **Bazofile stains**
 - *Metyl blue, Toluidine, Hematoxylin*
 Substrates: Chromatin, Ribozomes,...

- **Impregnation**
 - *Salt of silver or gold*
 - neurons and glial cells
Methods of staining:

1. **STANDARD STAINING** – hematoxylin and eosin

2. special techniques (used for demonstration of various substances / antigens) – **HISTOCHEMISTRY, IMMUNOHISTOCHEMISTRY**...
STANDARD STAINING: hematoxylin a eosin

<table>
<thead>
<tr>
<th>Component</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleus</td>
<td>blue</td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>light red</td>
</tr>
<tr>
<td>Kolagen</td>
<td>red</td>
</tr>
</tbody>
</table>
Special methods - **HISTOCHEMISTRY**

- if we want to demonstrate certain specific substances / components of cells -> various subst. stain in different colour (depends on characteristics of stained subst. and stain itself)

- amyloid, sacharides, lipids, proteins, NA, connective tissue, nervous tissue...

- congo red, PAS, van Gieson, PWH, Gram, Z-N...
Green trichrome

<table>
<thead>
<tr>
<th>Component</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleus</td>
<td>blue</td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>lightred</td>
</tr>
<tr>
<td>Collagen</td>
<td>green</td>
</tr>
</tbody>
</table>
Special methods -

IMMUNOHISTOCHEMISTRY

- used for demonstration of *presence and location of a certain antigen* in / on a cell (membrane, cytoplasm, nucleus)
- with the use of specific *antibodies* and *chromogens*
- colour is always the same (brown)
IMMUNOHISTOCHEMISTRY – use

• tumors of unknown primary site
• prognostic markers of tumors
 (expression of HER-2/neu in breast Ca, Ki67) – modification of therapy!!!
• prediction of response to therapy
 (estrogen receptors in breast Ca)
• infectious diseases – viruses (Ab against RNA / DNA, HPV, herpesviruses), bacteria, parasites
CYTOLOGY - material

- **EXFOLIATIVE**
 - *material*: spontaneous detachment of cells from epithelial surfaces, scraping, brushing, lavage of mucosal surfaces

- **INTERVENTION**
 - *material*: obtained by aspiration, curettage,... / during surgery (FNAC – fine needle aspiration cyt.)
CYTOLOGY - use

- dg and management of **tumors**
- dif.dg. of **benign and malignant** tumors (breast)
- dg during surgery
- dg of specific **infectious diseases** (TBC from LN)
- dg non-tumorous, **inflammatory lesions** (Hashimoto disease)
- **cytogenetic** testing
FNAC – fine needle aspiration cytology

- **use**: **palpable lesions** (breast, LN, thyroid, soft tissue, salivary glands, intraabdominal lesions, testicles)
- **advantages**: no need for hospitalisation and anesthesia, method is quick, safe, repeatable, painless and cheap