Blood physiology

© katarina.babinska@fmed.uniba.sk
Institute of Physiology
Comenius University
Bratislava 2015
Blood tests
• a routine examination in medicine
• will help you to make diagnosis and to treat

Physiology
• studies the function of a healthy human body
• if you know what is normal, you can detect abnormalities/diseases and treat them
Blood

Definition
Red, opaque liquid that circulates in blood vessels, connective tissue.

Blood components:
- plasma
- blood elements (corpuscles):
 1. erythrocytes - red blood cells
 2. leukocytes - white blood corpuscles
 3. thrombocytes - platelets

SPECIFIC GRAVITY
Informs about the weight of a blood volume

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>blood</td>
<td>1,052 – 1,063 /ml (g.cm⁻³)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>blood elements</td>
<td>1,090 ml (g.cm⁻³)</td>
</tr>
<tr>
<td>plasma</td>
<td>1,026 – 1,031 / ml (g.cm⁻³)</td>
</tr>
</tbody>
</table>
NORMAL BLOOD VOLUME

- for normal body function constant blood volume is vital
- major blood loss is a life threatening event

7-8 % of body weight
male 6 l
female 4,5 l

= normovolaemia

hypovolaemia
e.g. in bleeding, dehydration

hypervolaemia
• e.g. in kidney disease
Functions of blood:

1. blood instantly circulates in blood vessels – ideal medium for **transportation**:
 - \(\text{O}_2 \) and \(\text{CO}_2 \) (lungs ↔ tissues)
 - **nutrients** (gut – liver/tissues)
 - cellular **waste products** to places of their elimination (kidney, liver)
 - **hormones** and physiologically active substances (e.g. clotting factors)
 - cells and molecules involved in **immune** functions
 - **heat** (liver, muscles → all over the body)
 - **medicaments**, etc.
2. blood helps to maintain homeostasis in the body
- **homeostasis** = constant internal environment (of the body) despite fluctuations in external environment (e.g. varying external temperature/constant body temperature)

main aspects of **homeostasis** (related to blood)
- **body temperature** (isothermia)
- **pH of body fluids** = concentration of \(H^+ \) (isohydria)
- **ion concentration** and osmotic pressure (isoosmia)
- **volume of blood** (isovolemia)
- (there are more aspects, e.g. blood glucose level, etc.)

Balance – constant temperature, pH, ion concentration, blood volume
- **homeostasis**
 - is vital for normal function/survival of the human body
 - is regulated by different control mechanisms (feedback mechanisms)

Imbalance (↑ ↓)
(temperature, blood volume, pH, ion concentration)

Balance reestablished

Mechanisms involved in homeostasis control
(kidneys, respiratory, CVS, endocrine, blood...)

3. **haemostatic function of blood**
- **haemostasis** = bleeding arrest
 - components of blood (platelets, clotting factors) are activated in case of bleeding in order to stop the bleeding
- the proportion of blood volume that is occupied by red blood cells

\[
\text{haematocrit} = \frac{\text{erythrocyte volume}}{\text{blood volume}}
\]

Normal values

- **males**
 (39 - 49%) 0.39 – 0.49

- **females**
 0.35 – 0.43 (35 - 43%)
causes a change in erythrocyte count

decreased hematocrit
- anaemias
- after chronic bleeding

increased hematocrit
- living in high altitudes
- polycytemia

Abnormalities of haematocrit

<table>
<thead>
<tr>
<th>causes</th>
<th>a change in erythrocyte count</th>
<th>a change in blood volume (plasma volume)</th>
</tr>
</thead>
<tbody>
<tr>
<td>decreased hematocrit</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>- anaemias</td>
<td>- pregnancy</td>
</tr>
<tr>
<td></td>
<td>- after chronic bleeding</td>
<td>- after infusion</td>
</tr>
<tr>
<td>increased hematocrit</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>- living in high altitudes</td>
<td>- dehydration</td>
</tr>
<tr>
<td></td>
<td>- polycytemia</td>
<td></td>
</tr>
</tbody>
</table>
ERYTHROCYTE SEDIMENTATION RATE (FW)

Blood is a suspension = heterogeneous fluid containing solid particles that are sufficiently large for sedimentation.

Blood sample in a tube (containing anticlotting agent)
-erythrocytes sink to the bottom (heavier than plasma - gravitation)
= Er sedimentation

-leave behind transparent upper layer of plasma
erythrocyte sedimentation rate = size of the plasma layer (mm)

- Er sedimentation depends on the electrically charged blood components
 - erythrocytes - charged
 - plasma proteins + charged
Determination of sedimentation rate

- in tubes (e.g. Westergren tubes, Sedivettes)
- size of the plasma layer in the sample is measured

Normal values (normal FW)

<table>
<thead>
<tr>
<th></th>
<th>1st hour</th>
<th>2nd hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>males</td>
<td>2 – 5 mm (up to 15 mm)</td>
<td>two times the value in 1st hour or less (but not more !)</td>
</tr>
<tr>
<td>females</td>
<td>3 – 8 mm (up to 20 mm)</td>
<td></td>
</tr>
</tbody>
</table>

https://www.sarstedt.com/fileadmin/produkte/bilder/_processed_/csm_90.1090_2402_a3f8824e35.png
Abnormalities in sedimentation rate
(very much related to abnormalities in electrically charged components)

<table>
<thead>
<tr>
<th>Higher Sedimentation Rate</th>
<th>Concentration of Plasma Proteins - Globulins - Fibrinogen</th>
<th>Erythrocyte Count</th>
<th>Inflammatory Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>↓</td>
<td>Cancer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Some types – Lymphoma, Myeloma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Anemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Periods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pregnancy</td>
</tr>
<tr>
<td>Lower Sedimentation Rate</td>
<td>Erythrocyte Count</td>
<td>Plasma Protein Concentration</td>
<td>Polyglobulia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>↓</td>
<td>Abnormalities in Erythrocyte Shape</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Starvation</td>
</tr>
</tbody>
</table>

Females – lower sedimentation rate due to:
- Lower erythrocyte count
- Higher concentration of fibrinogen (plasma protein)

- Sedimentation rate – a non-specific marker of inflammation
VISCOSITY

- resistance of blood (liquid) to flow (due to internal friction of blood layers during blood flow + friction of blood and vessel walls)
- expressed in relation to distilled water (without units)
- viscosity of distilled water = 1

blood 4 – 5,3 (x higher than water)
plasma 1,5 – 2 (x higher than water)

- viscosity depends on:
 • *erythrocytes* – count, size, shape
 • *plasma protein* concentration
 • velocity of blood flow
 • diameter of the vessel

Hyperviscosity of blood (occurs in some conditions)
- excessive load for the heart
- aggregation of erythrocytes in small vessels - stops the blood flow – hypoxia
Erythrocytes – red blood elements (corpuscles)

Function
transport of the respiratory gasses O_2, CO_2

- erythrocytes lack nucleus and some other organelles - not true cells
- thus the capacity to transport oxygen is increased

Shape
- biconcave disc

Advantages of the biconcave shape:
1. **larger surface for gas diffusion** – a surface of biconcave disc is by 30% larger in comparison with a ball of the same diameter

2. **erythrocyte can change its shape** (deformability) – allows to pass through capillaries with diameter lower than diameter of erythrocyte

(abnormal shapes: spherocytes, drepanocytes, anulocytes, etc. – results in abnormal function and faster destruction)
Erythrocyte count

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>males</td>
<td>$4.3 - 5.3 \times 10^{12} \text{L}^{-1}$</td>
</tr>
<tr>
<td>females</td>
<td>$3.8 - 4.8 \times 10^{12} \text{L}^{-1}$</td>
</tr>
</tbody>
</table>

Abnormalities

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hypererythrocytosis (polycytemia, polyglobulia)</td>
<td>- conditions associated with hypoxia</td>
</tr>
<tr>
<td></td>
<td>- e.g. long term stay in high altitudes</td>
</tr>
<tr>
<td></td>
<td>- newborn babies ($7-8. \times 10^{12} \text{L}^{-1}$)</td>
</tr>
<tr>
<td>erythrocytopenia</td>
<td>- less RBCs - often in anaemias</td>
</tr>
</tbody>
</table>

Size

<table>
<thead>
<tr>
<th>Type</th>
<th>Diameter (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>microcytes</td>
<td>< 6.7</td>
</tr>
<tr>
<td>normocytes</td>
<td>7.2 ± 0.5</td>
</tr>
<tr>
<td>macrocytes</td>
<td>$7.7 - 9$</td>
</tr>
<tr>
<td>megalocytes</td>
<td>> 9</td>
</tr>
</tbody>
</table>
Composition of erythrocytes

Cell membrane
- lipid bilayer
- protein skeleton - formed of **spectrin, actin** – allow to maintain the shape of Ery
- skeleton is attached to the cell membrane by the protein **ankyrin**
- integral membrane proteins (pass “through“ the membrane) involved in the function of Ery: receptors, ion channels etc.
- **antigens** („on the surface“ of the cell membrane)
Blood groups (blood types)

Antigens

- substances present in cell membranes (also of Ery)
- determine immunological identity of an individual (different people – different antigens)
- immune system is able to recognize cells with „own“ antigens and protect them
- if a foreign cell (with different antigens) enters the body it is recognized as non-self and potentially dangerous
- it starts an immune response, e.g.
 - production of antibodies against this antigen
 - or it reacts with antibodies already present in the body
- antibody is attached to antigen in cell membrane, subsequently the cell is destructed
- function: resistance against foreign agents

- strong antigens – fast and strong immune response
- weak antigens - weak or no response
Presence of antigens in the membrane of erythrocytes (blood group substances) determines the blood group.

Blood type must be considered in:
- transfusions
- transplantations
- gynecology and obstetrics

Major clinical importance (out of all existing blood systems):
1. ABO system
2. Rh system

- strong antigens (i.e. may cause a strong and rapid immune reaction)
- in case of mismatching transfusion – high risk of
 - serious health consequences
 - death

GENERAL RULE: USE MATCHING BLOOD (POSSIBLY THE SAME BLOOD TYPE)
- 4 blood types are recognized in ABO system: **A, B, AB, 0**
 (genetically determined, inherited)
- blood group in the ABO system - determined by:

1. Presence/absence of **antigen A and/or antigen B**
 in the membrane of erythrocytes
 - antigens – glycoproteins
 - antigens related to blood types are called **agglutinogens**

2. Presence/absence of **antibodies anti A and/or anti B** in plasma
 - immunoglobulins
 - produced after birth, maximum levels in the adults
 - antibodies related to blood groups are called **agglutinins**
ABO – blood groups

Blood group

- **A** (48%)
- **B** (9%)
- **AB** (4%)
- **0** (39%)

Erythrocytes

- **Agglutinogen**
- **Antigen**

Plasma

- **Agglutinins**
- **Antibodies**

- **A** (anti B)
- **B** (anti A)
- **A, B** (not present)
- **H** (anti A, B)

substance H is not an antigen

© Katarína Babinská, MD, PhD. MSc., 2010
Blood groups and transfusion

- **incompatible blood (mismatched)**

 - recipient (patient)
 A / anti B

 - donor
 B / anti A

- **compatible (matching) blood**

 - recipient (patient)
 A / anti B

 - donor
 A / anti B
<table>
<thead>
<tr>
<th>Donor</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AB</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Donor</td>
<td>Recipient</td>
<td>A</td>
<td>B</td>
<td>AB</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>AB</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>A</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Reaction after transfusion of mismatching blood

• agglutinins get attached to agglutinogens in Er membranes – **agglutination** occurs
 – aggregates of Er are formed (2 – 10 Er attached to a molecule of an antibody)

• possible consequences - more or less serious:
 – immune reaction, **circulatory shock** (breathlessness, pain in the chest, nausea, sweating)
 – hemolysis, icterus, **kidney failure**, death

• symptoms usually occur soon after the transfusion has started – in this case immediately STOP the transfusion

ABO compatibility and transplantation

• the donated organ should be ABO matching
Subgroups exist within blood groups:
A₁, A₂, A₃, Aₓ B₁, B₂, B₃, Bₓ
• A₁, is stronger antigen than A₂
• subgroups are mismatching - posttransfusion reaction can occur between subgroups (e.g. A₁ and A₂)

Transfusion – general rule: give matching (compatible) blood

Blood derivatives
❌ full blood
 the same blood group
❌ erythrocytes
 - may be given also to some other blood groups
 - O: universal donor
 - AB: universal recipient
❌ plasma
 - may be given to some other blood groups
 - AB – universal donor,
 - O – universal recipient
Rh system

1. presence of **3 antigens** in the membrane of Er:
 (genetically determined)
 - C or c
 - D or d
 - E or e

 - Rh positivity (Rh⁺) – 85% of population
 - determined by the presence of **antigen D** in the erythrocyte membrane
 - CDE, CDe, cDe, cDE

 - Rh negativity (Rh⁻) – 15% of population
 - d antigen present: CdE, Cde, cde, cdE

 - sometimes the presence of E shows a weak positivity in subjects with d antigen

2. **antibodies** in Rh system - **normally not present**
 However!!!
 - D is a strong antigen (all the remaining are weak antigens)
 - if Rh⁺ Er enter blood of a Rh⁻ person, D is recognized as a „foreign“ antigen and production of antibodies is started
Rh factor and transfusion

Rh negat donor → Rh negat patient
- the same blood group - matching

Rh posit donor → Rh posit patient
- the same blood group - matching

Rh negat donor → Rh posit patient
- matching - „d“ does not trigger antibody production
Rh posit donor \rightarrow Rh negat recipient
- their production can be triggered if Rh$^+$ erythrocytes enter the blood of a Rh$^-$ individual (e.g. transfusion of Rh incompatible blood)

A/ 1st transfusion – no posttransfusion reaction - no antibodies present in blood of recipient

B/ Rh$^+$ erythrocytes act as antigen and stimulate production of antibodies against antigen D (within weeks) – the individual becomes sensitized (i.e. antibodies are present in his blood)

C/ 2nd transfusion of incompatible Rh$^+$ blood – antibodies react with antigen D, posttransfusion reaction occurs

(„d“ does not induce production of antibodies)
Incompatibility of the blood systems of the mother and the fetus

\[\text{Rh}^+ \text{ father } + \quad \text{Rh}^- \text{ mother } \rightarrow \]

- A/ \text{Rh}^- \text{ fetus (no problem)} or
- B/ \text{Rh}^+ \text{ fetus (may be a risk)}

1st pregnancy
- circulations of the mother and the fetus are separated by placenta that is a barrier for Er
- usually no problems with Rh incompatibility
- in case of complicated birth, accident, etc.
 the \text{Rh}^+ \text{ erythrocytes of the fetus may enter the blood of the Rh}^- \text{ mother}
- antibody production against baby’s Er is induced in the mother (even as little as 0,5 ml of blood may start the Ab production)
- antibodies remain in blood of a Rh^- mother
2nd pregnancy
- problems occur if the 2nd baby is also Rh⁺
- antibodies from mother’s blood enter blood of the fetus through the placenta, attach to baby’s Er
- agglutination and hemolysis of Er of the fetus

Consequences
- hemolytic disease of the newborn: anaemia, hypoxia, icterus-risk of brain damage, death in utero

Next pregnancies – production of antibodies is even more higher (problems in about 3% of 2nd and 10% of 3rd pregnancies)

Treatment and prevention
- anti-D serum latest until 72 hours after termination of the pregnancy (birth, abortion) is given to the mother
- antibodies anti-D from the serum are attached to the Er of baby (in mother’s blood)
- the Er marked by anti-D are destroyed, thus antibody production by the mother’s body is prevented
Other blood systems

- About 30 blood systems exist
- Clinically significant:

<table>
<thead>
<tr>
<th>Blood System</th>
<th>Blood Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kell (K, k)</td>
<td>MNSs</td>
</tr>
<tr>
<td>Kidd</td>
<td>P</td>
</tr>
<tr>
<td>Lewis (Lewisa, Lewisb)</td>
<td>Diego</td>
</tr>
<tr>
<td>Lutheran, etc.</td>
<td></td>
</tr>
</tbody>
</table>

- may cause incompatibility of donor´s and recipient´s blood despite compatibility in ABO and Rh system
- may cause mother/fetus incompatibility
- may cause posttransfusion reaction in individuals who often receive transfusion
Crossmatching test

- assessment of compatibility between blood of donor and recipient
- blood of both donor and recipient is centrifuged, serum is separated from erythrocytes
- test is done in 2 steps:
 1. **major crossmatching test:**
 serum of recipient is mixed with erythrocytes of donor
 2. **minor crossmatching test:**
 serum of donor and erythrocytes of recipient

Result:
- no agglutination = blood compatible
- agglutination = mismatching blood

Biological test
- when transfusion starts
- give 20 ml of blood, then wait about 2-3 minutes
- repeat 2 more times
- check for symptoms of transfusion reaction
- dyspnea, tachycardia, sweating, low blood pressure, dizziness, etc.
Composizione Erythrocyte:
- Acqua 60%
- Materia secca 40%, di cui 95% è hemoglobina

Altri importanti sostanze in citoplasma
- Ioni
- Carbonatdehydratase – importante per il trasporto di CO₂
 \[H₂O + CO₂ \rightarrow H₂CO₃ \]
- 2,3 BPG – prodotto della metabolismo Erythrocyte, influenza la affinità di Hb a O₂

Erythrocyte metabolism
Gliakolisi: 10% aerobico, 90% anaerobico

Main products:
- **ATP** – mantenimento della forma e elasticità della membrana eritrócita
- **2,3 BPG (2,3 - biphosphoglycerate)**
 - combina con le β catene di deossi-hemoglobina
 - riduce l'affinità del globina sanguigna per O₂ – supporta la sua dissoziazione da emoglobina e diffusione nelle tessuti
 - se l’affidabilità dell’ossigeno è inferiore, la concentrazione di 2,3 BPG aumenta
Haemoglobin (Hb)

Function:
- transport of the respiratory gases O_2, CO_2
- maintenance of the constant pH of blood

Composition:
4 subunits, each built of:
- **haem** - tetrapyrolic ring (protoporphyrin IX) with centrally bound Fe^{2+}

 - $2\text{ succinyl Co A} + 2\text{ glycine} = \text{ pyrol}$
 - $4\text{ pyrols} = \text{ tetrapyrolic ring (protoporphyrin IX)}$
 - $\text{ protoporphyrin IX} + Fe = \text{ haem}$

- **globin** (96% of the molecule)
 - chain of amino acids (approx. 140)
 - according to sequence of amino acids 6 types of Hb are distinguished: $\alpha,\beta,\gamma,\delta,\varepsilon,\zeta$
 - in a molecule of haemoglobin always 2 types of chains are present - in pairs

 haem + globin = haemoglobin
HEMOGLOBIN TYPES

Adult Hb A
(2α 2β) - 97.5% Hb A₂ (2α 2δ) - 2.5%

Foetal Hb F
(2α 2γ) - easier combines with O₂ than Hb A

Embryonic Hb E
Gower I (2ζ 2ε), Gower II (2a 2ε), Portland (2g 2ζ)

Fetal haemoglobin
• main form of haemoglobin
 - in foetus
 - and in the newborn until about 6 mo old

• higher affinity to O₂ = binds O₂ more tightly than the adult form, giving the developing fetus better access to O₂ from the mother's bloodstream

• in newborns, fetal hemoglobin is nearly completely replaced by adult hemoglobin by approximately the 6-12 month of postnatal life
Abnormal hemoglobin

- abnormal sequence of amino acids, less than 4 chains in molecule
- abnormal erythrocyte shape, function, life span
- e.g. sickle cell anemia
 - one amino acid in β-chain is changed (glutamic acid → valine)
 - cells have sickle shape
 - become trapped in capillaries – hemolyze, anemia, hypoxia

Normal concentration of hemoglobin

<table>
<thead>
<tr>
<th></th>
<th>males</th>
<th>females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>140 – 180 g.l⁻¹</td>
<td>120 – 160 g.l⁻¹</td>
</tr>
</tbody>
</table>

Abnormalities

- **anaemia** - decreased haemoglobin concentration
 - usually associated with decreased erythrocyte count and low hematocrit value
DERIVATIVES OF HEMOGLOBIN

Normal

1. oxyhemoglobin - O₂ is bound to Fe²⁺
 (bright red colour)
 - 1 molecule of Hb – maximum 4 molecules of O₂
 - 1 g Hb transports 1,34 ml O₂

 oxygen carrying capacity
 - amount of oxygen that hemoglobin in 1 liter of blood is capable of transporting
 e.g. in a male with haemoglobin concentration 160 g.l⁻¹
 160 x 1,34 = 214 (ml)

Saturation of Hb = % oxy Hb from total Hb in blood that carries O₂

 arterial blood: 96 – 100 %
 venous blood 75 %
Oxygen association – dissociation curve

- indicates saturation of Hb in relation to partial pressure of O_2 (pO_2)

- sigmoidal shape

- the higher pO_2, the more O_2 is bound to Hb

- beginning is steep – i.e. already under low pO_2 is blood well saturated with O_2 (high affinity of Hb to O_2)

- after the first molecule of O_2 is bound, the spatioal configuration of Hb is changed and next molecules of O_2 are more readily bound

High altitudes:

- 3000 m – 60 mm Hg
- 4500 m – 44 mm Hg
Factors affecting combination of O₂ and Hb (oxygen dissociation curve):
1. pCO₂
2. pH
3. temperature
4. content of 2,3 DPG in erythrocytes

(2,3-difosfoglycerát – produkt metabolizmu Er, viaže sa na Hb)

Affinity of Hb to O₂ is decreased

= O₂ is more easily released from the bound to Hb

- pCO₂ ↑ (Bohr effect)
- pH ↓
- temperature ↑
- 2,3 DPG ↑

= shift to right and down (e.g. in tissues)

Affinity of Hb to O₂ is increased

= O₂ is released from bound with Hb less easily

- pCO₂ ↓
- pH ↑
- temperature ↓
- 2,3 DPG ↓

= shift to left and up (e.g. in lungs)
2. **reduced hemoglobin**
 - after dissociation, no O₂ in hemoglobin (dark red colour)

3. **carbaminohemoglobin**
 - carries CO₂ bound to – NH₂ group of globin chain

Abnormal

1. **carboxyhemoglobin**: CO bound to Fe²⁺
 - strongly attracted to hemoglobin (high affinity, 200 times higher than O₂)
 - 0.1% of CO in atmosphere - saturates 50% of hemoglobin
 - 0.3% of CO – saturates 75% of hemoglobin
 - present in higher concentration blood smokers
 - gas produced by cars – accidents (gas heating, car repair in closed garage)

2. **methemoglobin** (met Hb): Fe²⁺ oxidized to Fe³⁺
 - O₂ strongly bound, unable to dissociate from methemoglobin
 - in a healthy human: 0.5 – 2.5% of hemoglobin
 - further increase is prohibited by **met Hb reductase**
 - **babies up to 6 mo** are prone to formation of met Hb (immature body functions)
 - nitrites in drinking water (for milk preparation) cause oxidation of Fe²⁺
HAEMOLYSIS

destruction of the erythrocyte membrane, hemoglobin is released from erythrocyte (e.g. into plasma) (opaque suspension ⇒ transparent solution)

- osmotic
 - hypertonic solution
 - hypotonic solution
 - minimal osmotic resistance: \(0.44 - 0.40 \text{ g } \text{l}^{-1} \text{ NaCl}\)
 - maximal osmotic resistance: \(0.34 - 0.30 \text{ g } \text{l}^{-1} \text{ NaCl}\)

- chemical
 - acids, bases, tensides

- physical
 - thermic energy, irradiation, mechanic energy
 - (e.g. artificial heart valves)

- immunologic
 - transfusion of incompatible blood

- toxic
 - cell lysis caused by enzymes in poison of snakes, wasps, spiders, plants

- daily approx 1% of Ery do hemolyze – old elements
- hemolytic anaemia – decreased Hb concentration due to excessive hemolysis
• **production of Ery**: bone marrow

• **life span**: 120 days

• **destruction of Ery**: spleen

 – **iron and protein** is recycled and used for formation of new Ery
 – **bilirubin** = product of breakdown of Hb, normally present in blood in low concentration – excreted in bile
 – **icterus** (jaundice) – caused by excess of unconjugated bilirubin in blood
 - yellow coloration of the skin and sclera
Neonatal icterus

- elevated bilirubin production because of increased breakdown of fetal erythrocytes (and low capacity of newborn’s liver to conjugate bilirubin with glucuronic acid)

- usually not a serious condition, spontaneously disappears in 1-2 weeks

- Bi is neurotoxic – prolonged excess in blood may cause serious consequences:
 - kernicterus = bilirubin induced brain dysfunction
 - permanent mental and motor disability

- serious jaundice may occur in Rhesus incompatibility of mother and baby
Thrombocytes – blood platelets

- cell fragments split from megakaryocytes
- do not contain nucleus
- shape of disc, diameter 2 – 4 mm

Function

- **haemostasis** - formation of the platelet plug
 - blocks the „hole“ in the injured vessel

Normal count

150 – 350.10^9 . l^-1
• **cell membrane of platelets**
 - **invaginations** – channel system communicating with the surface of a platelet
 - **receptors** – make the platelets „sticky“ when bleeding occurs

• **cytoplasm of the platelets**
 - **vesicles** (granules: α, β, δ) - contain substances necessary for blood clotting: ADP, ATP, Ca++, platelet clotting factors, enzymes
 - **fibres** = microfilaments – allow contractility of the platelets
 - **dense tubular system** – a store of calcium (without calcium the blood clotting does not proceed)
Haemostasis – bleeding arrest

- a complex process which makes a bleeding to stop

 • *maintenance of normal blood volume* – vital

 • *massive bleeding may lead to cardiovascular collapse and death*

- haemostasis includes 3 simultaneous interrelated processes

 1/ reaction of the **injured vessel**

 2/ activity of the **platelets** (platelet plug formation)

 3/ **blood clotting** (haemocoagulation)
1. Vascular constriction

- contraction of the smooth muscle in the vessel wall (circular muscle)

Effects

- a decrease of the vessel diameter
- diminished blood flow through the ruptured vessel
- a decrease of the blood loss
2. Activation of the platelets - formation of the platelet plug

- includes several steps:

A/ ADHESION OF PLATELETS
- endothelial lining of vessels - repels the platelets

- vessel trauma
 - endothelial lining is damaged
 - exposure of subendothelial collagen tissue

- platelets stick to collagen
 - collagen has receptors for thrombocyte receptors

Q: What is the stimulus for platelet activation?
A: Contact of blood with collagen (due to damage of the endothium)

http://asheducationbook.hematologylibrary.org/content/2010/1/387/F1.expansion
B/ CHANGE OF THE SHAPE

- **platelets swell and become spherical**
 - caused by relaxation of the contractile fibres in cytoplasm (actin and myosin)

- **formation of pseudopods** protruding from the surface
 - for easier contact with
 - other platelets
 - collagen (vessel)
 - fibrin threads
 (produced in blood clotting)

C/ THE GRANULE RELEASE

- **releasing reaction – degranulation**
 - active substances are released from platelets into the blood
 where they support haemostasis
 - e.g. serotonin, ADP, thromboxane A$_2$ (TXA$_2$), platelet factors, etc.
d/ AGGREGATION OF THROMBOCYTES

- platelets stuck to the collagen stimulate sticking of their further layers

Platelet activity results in formation of the **platelet plug**

- it does not contain fibrin threads, therefore **loose, fragile**
- it is sufficient for **temporary blocking of the bleeding**, especially in small vessels
3. Blood coagulation (haemocoagulation, blood clotting)

- cascade of enzyme reactions following in definite and rapid sequence
- blood contains more than 50 substances related to blood clotting
- major role - plasma **clotting factors** (12 substances)

Result of haemocoagulation:

formation of **fibrin threads** - strengthen and stabilize the platelet plug

net of fibrin threads + platelet plug + trapped erythrocytes = **blood clot**

- **blood clot** - seals the broken vessel until the tissue is repaired
Blood clotting factors

I.	fibrinogen
II.	prothrombin
III.	tissue thromboplastin
IV.	Ca^{2+} ions
V.	proaccelerin
VII.	proconvertin
VIII.	antihemophilic factor
VIII. C	antihemophilic globulin
VIII. A	von Willebrand factor
IX.	Plasma thrombopastin component
	- Christmas factor
X.	Stuart – Prower factor
XI.	PTA – Plasma thromboplastin antecedent
XII.	Hageman factor
XIII.	fibrin stabilising factor

- present in blood
- inactive forms of protheolytic enzymes (majority)
- blood clotting = a cascade of chemical reactions leading to conversion to active forms

\[
\begin{align*}
F_1 & \rightarrow F_{1A} \\
F_2 & \rightarrow F_{2A}
\end{align*}
\]

- synthesized in liver
- vitamin K – required for synthesis of factor II, VII, IX, X

- HK - High molecular weight kininogen
- PK - Prekallikrein
Blood clotting
- can be activated by 2 events (stimuli)

1. exposure of collagen in vessel wall (when endothelium is damaged)
 activates a sequence of chemical reactions referred to as
 intrinsic pathway of clotting

2. release of tissue thromboplastin from the damaged tissue
 activates a sequence of chemical reactions referred to as
 extrinsic pathway of clotting

final reactions of both intrinsic and extrinsic pathway are the same
and they are referred to as
=common pathway

- result: formation of fibrin thread
INTRINSIC PATHWAY
- activated by damage of endothelial layer
- f. XII

EXTRINSIC PATHWAY
- activated by damage of vessel wall and extravascular tissue
- f. III

COMMON PATHWAY

- Prothrombin
- Thrombin
- Fibrinogen
- Fibrin monomer
- Fibrin polymer
- Cross-linked fibrin polymer
INTRINSIC PATHWAY
- activated by damage of endothelial layer - f. XII

EXTRINSIC PATHWAY
- activated by damage of vesel wall and extravascular tissue - f. III

1. fibrin monomer
2. fibrin polymer
3. cross-linked fibrin polymer
4. stabilization of the cross linked fibrin polymer
EXTRINSIC PATHWAY
- activated by
damage of vesel wall and extravascular tissue
- f. III
INTRINSIC PATHWAY
- activated by damage of endothelial layer
- f. XII

EXTRINSIC PATHWAY
- activated by damage of vessel wall and extravascular tissue
- f. III

COMMON PATHWAY
What are the stimuli for haemocoagulation?

1. **exposure of collagen in vessel wall** (when endothelium is damaged)
 - activates a sequence of chemical reactions referred to as **intrinsic pathway of clotting**

2. **release of tissue thromboplastin from the damaged tissue**
 - activates a sequence of chemical reactions referred to as **extrinsic pathway of clotting**

http://ahdc.vet.cornell.edu/clinpath/modules/coags/images/primary.gif
In bleeding both pathways are activated

Intrinsic pathway - slow (fibrin threads are formed in 6-10 min)

Extrinsic pathway – faster (seconds)

Blood clot

- network of fibrin threads running in all directions
 - adhere to damaged surfaces of vessels
- contains trapped plasma, blood elements, coagulation factors

- in 20 -60 minutes after formation the clot retraction takes place
 - caused by the contraction of thrombocytes (contractile fibres – actin, myosin)
 - liquid (serum) is extruded from the clot
 - wound surfaces are drawn together, tissue repair is promoted
Deficiency of clotting factors

VIII C – haemophilia A (classical) – bleeding tendency
- blood clotting is slowed down (various degrees of severity)
 - **prolonged** spontaneous or traumatic bleeding, blood in urine, within joints, etc.
 - even though platelets function normally!!
- genetically transmitted deficiency (X chromosome)
- affects only males, females carry the gene but do not show symptoms

Other types of haemophilia

VIII A – von Willebrand disease

IX – haemophilia B (Christmas disease - rare)
4. **Fibrinolysis** (dissolution of the clot)

The clot can follow one of two courses:

A/
- it is invaded by fibroblasts
- connective tissue is formed (in 1-2 weeks)

B/
- dissolution of the clot (if the clot is „too large“, excess is dissolved – allows for re-opening of clotted vessels)
- starts approx. in 24 h after bleeding has been checked and tissue repair is underway
plasmin - active component of fibrinolytic system
- formed from inactive plasminogen (plasma protein) by plasminogen activators
- plasminogen circulates in blood and gets trapped in the clot and then activated
- breaks down fibrin, fibrinogen, prothrombin, f. V, VII, VIII

activators of plasminogen
- tissue activators – from damaged endothelium
- plasma activators – e.g. thrombin, kallikrein, HMW kinin
- exogenous activators – streptokinase, urokinase (treatment of haematomas)

plasminogen inhibitors (alpha2-antiplasmin)
- tie plasmin and make it inactive (e.g. after the clot has been dissolved)

- products of the clot degradation – removed by phagocytosis
IN VIVO – Intravascular anticoagulants

- endothelial factors
 - smooth surface of the endothelial layer – non-wettable surface
 - glycocalyx - layer of mucopolysaccharides on the surface of endothelium
 - repels clotting factors and thrombocytes
 - thrombomodulin – protein bound to endothelial cells, binds thrombin

- blood flow – homogenously dispels clotting factors, prevents their local concentration

- anticoagulant substances
 - antithrombin III – binds thrombin, inactivates clotting factors
 - heparin – produced in basophils and mast cells
 - a weak anti-clotting agent
 - its anticoagulant effect increases in complex with antithrombin III
 (100 – 1000 x) – removes thrombin and f. XII, XI, IX, X
 - heparin and its derivatives - used for anticoagulant therapy
 - fibrin – adsorbs thrombin, prevents further conversion of fibrinogen to fibrin
Anticoagulants for clinical use

- tubes from special „non-wettable“ materials (silicone)
 - non-wettable surface = a surface that does not start the blood clotting
- decalcification – binding of Ca\(^{2+}\) ions - oxalate, citrate
- defibrination – removal of fibrin (e.g. snake toxins)
- coumarin derivates (e.g. warfarin)
 - block the effect of vitamin K in liver (long-term effect)
 - production of vitamin K dependent factors is affected – lack of Ca\(^{2+}\) receptor in their molecule
 - are used also as medicaments in anticoagulation therapy
 - effective within 12 hours
- heparin

In plasma both procoagulant and anticoagulant substances are present.

In normal conditions anticoagulants predominate.

After the vessel injury procoagulants become activated and override the anticoagulants.
Leukocytes – White blood cells

- **real cells** – contain nuclei and organelles
- **largest** formed elements in blood
- **lack colour** („white“), become visible after staining (e.g. the Pappenheim method)

Function

– **defence against foreign material** - „seek out and destroy“
– **main cells of the immune system** - „mobile units“
 - transported by blood to all parts of the body
 - from blood move into **tissues**, where they spend most of their lives

Normal count

- adults, children 4 - 10.10⁹.l⁻¹
- newborns 18 - 20.10⁹.l⁻¹
Leukocyte count
- varies throughout the day
 - minimum in the morning
 - maximum in the afternoon

Leukocytosis – increased Le count
- normal (Le released from stores)
 - after meal (postprandial)
 - heavy physical activity
 - emotional stress
 - hot environment
 - pregnancy
- abnormal (production of new Le)
 - infectious diseases
 - intoxication
 - cancer

Leukopenia – decreased Le count
- some diseases (e.g. influenza, tuberculosis)
- some medicaments

Leukocyte count
- varies throughout the day
- minimum in the morning
- maximum in the afternoon

adults, children 4 - 10.10^9.l^-1
Types of leukocytes

- **granulocytes**
 - specific granules (vesicles)
 - lobulated nucleus - polymorphonuclears
 1. **neutrophilic** 56-64%
 2. **eosinophilic** 1-3%
 3. **basophilic** 0.5-1%

- **agranulocytes**
 - do not contain specific granules
 - mononuclear – simple shape nucleus
 4. **monocytes** 3-8%
 5. **lymphocytes** 24-40%

differential white blood cell count (leukogram)
- examination of the % of individual types of leukocytes in %
- helps to make diagnosis - individual types of Le are involved in different functions

!!! in children – the most prevalent type of Le are lymphocytes
Neutrophilic granulocytes (56 – 64 % Le)

Properties
• nucleus 1 – 5 segments (lobes)
 - number of segments indicates age of the cell
 - young cells – one segment („stick“)
 - by maturation the number of segments increases
• cytoplasmic granules - purple colour (lysosomes with hydrolytic enzymes)

Function
• professional phagocytes (microphages) – ingest and destroy foreign material
• involved in non-specific immune reactions
• high motility, first line defence – first arrive to the place of invasion (of all WBC)

Eosinophilic granulocytes (1-3% Le)
• dense purple cytoplasmic granules, 2-segment nucleus
• weak ability of phagocytosis
• involved in:
 - the defence against parasites
 - allergic reactions
Granulocyte kinetics and life span

- formation in the bone marrow, mature elements released into blood
- if stimulated (e.g. inflammatory stimuli), they can pass from blood into tissues through the capillary wall
- life span: 4 - 5 days, then die
- if involved into phagocytosis, they die soon afterwards (i.e. earlier than in 4-5 d)

Basophilic granulocytes (0,5 – 1% Le)

- dark blue granules in cytoplasm
- two segment nucleus
- release active substances:
 - **histamin** – causes vascular dilatation – increases blood flow into areas of tissue damage, facilitates the movement of leucocytes into tissues
 - **heparin** – anticoagulant (useful in immune reactions)
Monocytes (3 – 8% Le)

- largest blood elements, kidney-shaped nucleus

Life fate

- in blood 10-20 h
- from blood - migrate into tissues → here maturate and transform to macrophages
 - free macrophages – actively move in tissues
 - fixed macrophages – in the sites of potential invasion of the pathogens
 - e.g. skin (histiocytes), lungs, liver, lymph nodes

Function: macrophages = professional phagocytes (non-specific immunity)

- antigen presenting cells (process foreign material and present to lymphocytes)

Lymphocytes (24 – 40% Le)

- large round nucleus, narrow cytoplasm
- recirculate

Types

- T-Ly (produced in thymus)
- B-Ly (produced in the bone marrow)
- NK cells (natural killers)
- K (killer) cells, LAK cells

Function: involved mainly in the acquired (specific) type of immunity

Life span: years
Defensive properties of leukocytes

- **chemotaxis** – direction and speed of movement influenced by chemical substances (i.e. produced in the focus of infection)
- **diapedesis** – ability to squeeze and pass through the capillary wall
- **amoeboid motion** – active movement in tissues, the cell projects protoplasmic extensions and follows them
- **adhesivity** – ability to stick to solid surfaces (to receptors in endothelium, bacteria, cells, etc.)
- **phagocytosis** (especially neutrophils and macrophages)
White blood cells and immunity

Immunity
- capacity to resist foreign substances that tend to damage tissues and organs
 - microorganisms
 - molecules
 - own abnormal cells (cancer cells, infected and old cells)
- function performed by the **immune system**

Immune system
- organs positioned throughout the body
 (thymus, lymph nodes, lymphoid tissue in gut, spleen, etc.)
- **white blood cells** - main cells of the immune system

Immunity
1. innate
2. acquired (adaptive)
- develops after birth when the body is first attacked by a foreign substances
1. **Innate immunity** (defense mechanisms present from birth)

Characteristics
- the immune response is non-specific
 (it is not targeted at a specific antigen, but is rather equal to different antigens)
- rapid immune response

Mechanisms (only those performed by the white blood cells are mentioned)

a) phagocytosis (ingestion and destruction of foreign material)
 - professional phagocytes
 - **neutrophils**
 - **macrophages** (more potent phagocytes)
 - (eosinophils – waker ability to perform phagocytosis)

b) action of some types of lymphocytes (other than B or T):
- recognize absence of normal “self” antigens in the body’s infected and tumour cells and destroy them
- recognize and kill cells coated with antibodies
Phagocytosis
- ingestion and destruction of foreign material (viruses, bacteria, own changed cells, foreign molecules etc.)

Cells specialized on phagocytosis (professional phagocytes)
- microphages – *neutrophilic* granulocytes
 - die after phagocytosis

- macrophages (transformed monocytes-operate in tissues)
 - higher capacity of phagocytosis than microphages (can ingest more and larger particles)
 - survive after phagocytosis
2. Acquired immunity (developed throughout the life)

A/ Active immunity
- developed in the body after exposure to a foreign antigen (by an infection, vaccination)
 – after first contact with foreign substance a weak immune reaction occurs
 – in next response is strengthened (principle of vaccination)
- active response of a host
- this immunity is permanent

Active immunization - vaccination
- vaccines contain weakened or dead microbes, that trigger an immune response and active immunity develops

B/ Passive immunization
- transfer of antibodies from exogenous source (e.g. from an immunized donor to a patient, from mother to a newborn via the breastmilk)
- temporary protection (weeks) - no active response of the immune system
Acquired immunity

• **specific**
 = targeted at foreign material that triggered the response

• therefore **highly effective**

• exhibits **immunological memory** (permanent immunity)

• mediated by **B and T lymphocytes**

Naive (virgin) cells

• B and T lymphocytes before they „meet“ the antigen

Effector cells

• lymphocytes, that were activated by an antigen (who carry receptors for that specific antigen)

Memory cells

• lymphocytes that were once activated can „remember“ the foreign agent

• after repeated contact with that particular antigen they can produce clones directed against the antigen

[Image links to additional resources]
Effector cells of acquired immunity

B-Lymphocytes
- formation and maturation in bone marrow
- mediate **humoral type** of immunity

- B-Ly after recognizing the foreign agent - transform into **plasma cells**
 - macrophages – antigen presenting cells (phagocytosis of the foreign material and exposure of the antigens into their cell membranes)
 - activation requires cooperation with T-lymphocytes

- plasma cells produce specific molecules of **antibodies** (immunoglobulins):
 - Ig M Ig A Ig G Ig D Ig E

- antibodies bind to the foreign agent (e.g. the bacteria) and mark it for destruction (by phagocytosis or by other mechanisms)
T-lymphocytes

- formation in bone marrow, maturation in the thymus
- exhibit cell mediated immunity - directly destroy the target cells (mainly virus infected cells)

• T_C (cytotoxic) – directly kill foreign cells by releasing substances that attack their cell membranes (make „a hole“ in the membrane)

• T_H (helper)

- required for activation of B-Ly (without their cooperation the B-Ly cannot recognize majority of antigens – failure of the immune system)
- produce *interleukins – regulate* the immune response

• T_S (suppressor) - close down the immune response after invading organisms are destroyed and the immune response has achieved its goal
Hematopoiesis
- development of blood cells

Life span of the blood elements

<table>
<thead>
<tr>
<th>Blood Element</th>
<th>Life Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes</td>
<td>120 days</td>
</tr>
<tr>
<td>Granulocytes</td>
<td>4 - 5 days</td>
</tr>
<tr>
<td>Monocytes</td>
<td>Weeks/Months</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>Months/Years</td>
</tr>
<tr>
<td>Thrombocytes</td>
<td>8 – 10 days</td>
</tr>
</tbody>
</table>

Hematopoiesis
- production, differentiation and maturation of the blood elements
- maintenance of normal count of formed elements in blood
Development of hematopoiesis

Mesenchymal period
- 2 - 12 weeks prenatally
- yolk sac
 - early forms of erythrocytes

Hepato-lienal period
- from 6. week prenatally
- liver, spleen
 - early forms of Er, Le, Tr

Medullary period
- from 20. week of fetal life – bone marrow is the chief organ of hematopoiesis
- production in bone marrow starts
 - erythro-, thrombo- and leukopoiesis
Bone marrow

- **a neonate, small child**
 - hematopoiesis in all bones

- **an adult**
 - flat bones
 - vertebrae
 - epiphyses of humerus, femur

- **red** – active hematopoiesis
- **yellow**
 - infiltrated by fat cells
 - in time of great demand, may become hematopoietic tissue again
- **grey** – no hematopoiesis
Haematopoietic stroma - stromal cells
- microenvironment that induces the differentiation of stem cells into the several blood-cell lines
- support the hematopoietic tissues
Development of blood elements – blood cell lines

- **Multipotent stem cell**
- **Common progenitor stem cells**
- **Precursor cells (unipotential)**

Series

Multipotential haematopoietic stem cell

- **Hematopoietic (myeloid)**
 - Erythroid
 - Megakaryocytic
 - Myelomonocytic

- **Lymphopoietic**
 - B-Ly
 - T-Ly
 - NK

- **Myeloblast**
 - Monoblast

- **Neutrophils (Ne)**
- **Basophils (Ba)**
- **Eosinophils (Eo)**

- **Granulocytes**
- **Monocytes**

- **Red blood cells**
- **Thrombocytes**

Stem cells – able to divide by mitosis, stores are continuously replenished

Unipotential cells – maturate into predetermined cells (colony forming units)
ERYTHROPOIESIS

Formation of red blood cells
• pronormoblast
• normoblast
 - basophilic
 - polychromatic
 - ortochromatic – expells the nucleus
• reticulocyte
 - lacks nucleus
 - larger than erythrocyte
 - contains small amount of RNA (i.e. ability to synthetize Hb)
 - in small counts present in blood (in 2 days in blood mature into Er)
• erythrocyte – mature element without nucleus and organelles

Maturation of the cells
- decrease in size
- decrease of RNA content
- increase in hemo – globin concentration
- blue colour is changing into pink
- expells the nucleus
Substances for erythropoiesis
- provided by diet - nutrients
 ✗ amino - acids
 ✗ iron
 A/ food derived - \(\text{Fe}^{3+} \)
 B/ recycled – from destroyed erythrocytes
 * deficiency – hypochromic anemia
 ✗ copper (plasma ceruloplasmin – stores)
 - helps in utilisation of iron stores
 * deficiency – hypochromic anemia
 ✗ cobalt
 ✗ vitamin B12 – extrinsic factor
 - it can be absorbed in small intestine only if bound to intrinsic factor
 produced in gastric mucosa
 ✗ folic acid
 - synthesis of heme (tetrapyrrol ring)
 * deficiency of B12 or folate – pernicious anaemia (megalocytic)
Regulation of erythropoiesis

erythropoietin
– a hormone produced in kidneys – glomerulus (mesangium)

effects of erythropoietin
• stimulates the stem cells – formation and release of erythrocytes into blood

erthropoietin production
- stimulated by hypoxia
(anaemia, staying in high altitudes, lung diseases, etc.)

source: http://wdict.net/img/erythropoietin.jpg
THROMBOPOIESIS

• megacaryoblast
• basophilic megakaryocyte
• granulated megakaryocyte

- polyploid cells (do not divide after replication, only nucleus is divided)

- extensions into capillaries in bone marrow

- platelets formed by fragmentation of cytoplasm

• thrombocyte
LEUKOPOIESIS

Granulocytes

- myeloblast
- promyelocyt
- myelocyt - Ne, Ba, Eo
- metamyelocyt - Ne, Ba, Eo
- stick - Ne, Ba, Eo
- granulocyte - Ne, Ba, Eo

Maturation of cells
- decrease in size
- granules are formed
- nucleus becomes smaller and lobulated
LEUKOPOIESIS

Monocytes
- monoblast
- promonocyt
- monocyct
- macrofage

Lymfocytes
- antigen independent cells
- immunocompetent cells (immunoblasts)
- lymphocytes
 - activated T-lymphocytes
 - plasma cells (from B lymphocytes) – after contact with antigen
Leukopoiesis

Granulocytes and monocytes
• granulopoietin – colony stimulating factor
produced in – monocytes, macrophages, activated T-Ly, endothelial cells
effects:
- stimulates proliferation and differentiation of granulocytes and monocytes
• growth factors stimulating granulocytes and macrophages
• exogenous factors – bacterial toxins
• lymphocytes – produce growth factors (e.g. lymphokines)

Lymphocytes
immunohormones (e.g. thymosin, thymopoietin), interleukins, growth factors

Thrombopoiesis
• thrombopoietin – humoral factor produced by kidney
- negative feedback
• factors stimulating colonies of megakaryocytes
• interleukins
Blood plasma

- liquid part of blood, component of the body fluids

Body fluid compartments (as % of body weight)

Total body fluids 60%
1. intracellular (ICF) 40%
2. extracellular (ECF) 20%
 - intravascular (plasma, lymph) 4 - 5%
 - interstitial (among cells in tissues) 15%
 - transcellular 1%
 (intraocular, synovial, pericardial, peritoneal, cerebrospinal fluid, etc.)

- ECF and ICF differ in ion composition

 Main ions in
 - extracellular fluid: Na⁺, Cl⁻, HCO₃⁻
 - intracellular fluid: K⁺, PO₄⁻
Plasma
transparent yellow fluid (separated from blood by standing or by centrifugation)

Constituents:
1. water 90%
2. dissolved substances – solutes 10%
 A/ organic – plasma proteins
 – other organic substances
 B/ inorganic

PLASMA PROTEINS
- produced in liver (except gamma globulins produced by the lymphocytes)

Composition and amount

<table>
<thead>
<tr>
<th>total protein</th>
<th>proteinemia</th>
<th>60 - 80 g .l⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>fractions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>albumin</td>
<td></td>
<td>35 - 50 g .l⁻¹</td>
</tr>
<tr>
<td>globulins (α₁, α₂, β, γ)</td>
<td>25 - 40 g .l⁻¹</td>
<td></td>
</tr>
<tr>
<td>fibrinogen</td>
<td></td>
<td>1,5 - 3,5 g .l⁻¹</td>
</tr>
<tr>
<td>albumin - globulin ratio</td>
<td>1,5 - 2</td>
<td></td>
</tr>
</tbody>
</table>
Functions:

- **Carriers** for other molecules
 - bind and transport substances (e.g. lipids, Fe, hormones, drugs, etc.)
 - if bound to proteins:
 - substances insoluble in water - become soluble
 - too fast filtration of substances with low molecules by kidneys is prevented
 - the effect of substances, e.g. hormones is slower and prolonged

- stability of blood suspension – affect the *sedimentation rate*

- influence the **blood viscosity** and normal blood flow

- maintenance of **constant pH** - protein buffer
 - proteins bind excess acids/bases, thus balance the pH of blood

- **Nutritional** function – rapid supply of amino-acids for tissues

- generate the **colloid – osmotic pressure** 3.3-4 kPa

- **Blood clotting** - plasma clotting factors

- **Immune functions** – immunoglobulins, complement
OTHER ORGANIC SUBSTANCES IN PLASMA

- include many different substances
 - glucose
 - lipids, cholesterol, triglycerides
 - nitrogen containing non-protein substances - creatin, creatinin, urea, uric acid
 - bilirubin, hormones, vitamins, etc.

- constant plasma concentration, e.g.
 - glycaemia 3,05 – 5,6 mmol.l⁻¹
 - cholesterolamaemia 2,8 – 5,0 mmol.l⁻¹

- their plasma levels indicate function of various organs or systems
 - hormone levels-endocrine system
 - creatine-kidneys
 - bilirubin-liver
 - glucose-pancreas, etc.

- affect plasma properties only to a small extent
INORGANIC SUBSTANCES IN PLASMA (IONS)

Main cations:
- sodium, calcium, potassium, iron, magnesium, copper, iodine

Main anions:
- chlorides, bicarbonates, phosphates

Function
- influence physical and chemical properties of plasma, e.g.
 - pH
 - osmotic pressure,
 - constant volume etc.
- participation in various biologic processes, e.g.
 - buffering
 - excitability of cells
 - permeability
 - blood clotting, etc.

Serum = plasma without fibrinogen and some other clotting factors
(when standing in a tube - plasma will form a clot, serum will remain liquid)
-plasma (but also all body fluids) contains dissolved substances that are osmotically active and give rise to osmotic pressure.

Osmosis - diffusion of solvent through semipermeable membrane from space with lower concentration of solute into the space with higher concentration.

- semipermeable membrane - permeable only for solvent, not for dissolved substances.

Osmotic pressure – water (solvent) passes the semipermeable membrane under pressure called osmotic pressure.
- the bigger the difference in concentration, the higher is the osmotic pressure.
Osmotic pressure of plasma

- the pressure that plasma (or any of the body fluids) would exert if separated from pure water by a membrane permeable only to water
- normal value 690 kPa

- osmotic forces are generated by
 96 % - electrolytes (of them 70 % NaCl),
 4% non – electrolytes (glucose, albumin)

- osmolarity of plasma (concentration of osmotically active substances):
 290 - 300 mmol.l⁻¹

Some functions in human body are based on osmotic pressure, e.g.:
 • regulation of water balance - hypothalamus monitors osmolarity of plasma
 • absorption in gut
 • water reabsorption in kidney
 • osmotic pressure needs to be considered when patient is given an infusion, or in laboratory experiments with blood

- blood plasma and blood elements – are isoosmotic (isotonic)
 = osmotic equilibrium – no water gain/loss
A/ Isotonic solutions
– the same osmotic pressure as plasma, optimum for function of Ery

B/ Hypertonic solutions
– higher osmotic pressure
– if a cell ("isotonic solution") is put into a hypertonic solution, it loses water, shrinks and may malfunction or die due to rupture of its membrane (haemolysis)

C/ Hypotonic solutions
– lower osmotic pressure
– water flow is directed into the erythrocyte
– cause expansion of cells, their malfunction and eventually destruction and death (haemolysis)

osmotic equilibrium can be broken in dehydration, after infusion of non-isotonic solution
In intravenous administration of solutions (fluids, nutrients, drugs)

• their concentration of osmotically active substances is adjusted to isotonicity

• isotonic solutions:
 – 0,9 % NaCl (physiological solution)
 – 5 % glucose
 – they can be infused without danger of disturbing osmotic equilibrium

• non – isotonic solutions may be used in special circumstances
 – e.g. hypertonic solution in cerebral oedema – water is attracted from brain tissue into the circulation
Oncotic pressure (colloid-osmotic pressure of plasma proteins)

- a component of osmotic pressure
- exerted by plasma albumins
- normal value: 3.7 – 4 kPa

(out of 690 kPa of the total osmotic pressure)

Function:
- plays role in water exchange in capillaries
- it exerts resorption pressure in capillaries – that allows the return of water from tissues into capillaries
- it prohibits water loss from circulation
- main factor for maintenance of constant blood volume
Blood capillaries

1. are permeable for low molecular weight substances (e.g. ions)
 - ions can freely cross the capillary membrane in both directions (tissue - capillary)
 therefore
 - the osmotic pressure of low-molecular weight substances in capillaries = 0
 - no net changes in water volume

2. are impermeable for plasma proteins (macromolecules)
 - plasma proteins exert oncotic (colloid-osmotic) pressure on capillary wall
 - concentration of proteins in plasma >> concentration of proteins in tissue fluid
 - water moves from tissues (interstitial fluid) into capillaries
Capillary filtration and reabsorption (effect of blood and oncotic pressures)

- **arterial end of capillary**

 blood pressure + oncotic pressure of interstitial fluid > **oncotic pressure of plasma**

 - filtration - liquid passes from capillary into interstitial space (4 + 0.7 > 3.7 kPa)

- **venous end of capillary** (blood pressure here lower than at the arterial end)

 blood pressure + oncotic pressure of interstitial fluid < **oncotic pressure of plasma**

 - resorption – water passes from interstitium into capillaries (2 + 0.7 < 3.7 kPa)

- normal concentration of plasma protein level – **maintenance of constant blood volume**
- hypoproteinemia (e.g. due to starvation, liver diseases, kidney disease) - oedema
Regulation of acid–base balance

- maintenance of constant pH value

- normal pH (arterial blood): $7,40 \pm 0,04$ (i.e. $7,36 - 7,44$)

- essential, because pH significantly affects enzyme systems, metabolism, membrane permeability, etc.

 - pH – concentration of H^+ - $[H^+]$
 - normal $[H^+] = 40 \text{ nmol} = 0,00000004 \text{ mol/l} = 4 \times 10^{-7} \text{ mol/l}$
 - $pH = - \log [H^+]$
 - $pH = 7,4$

- Internal environment = body fluids and substances dissolved in them
- Normal function of the body requires constant composition of body fluids
 - volume, osmolarity, concentration of ions, pH

- **homeostasis**
 - includes maintenance of constant conditions in the internal environment
 - strictly controlled by regulatory mechanisms

Regulation of acid–base balance = maintenance of constant pH value
Disorders of acid – base balance are caused by excess of

- acids - substances that release H^+, thus cause:
 - an increase concentration of H^+
 - a decrease of pH

- bases (alkalis) - substances that accept H^+, thus cause
 - a decrease in concentration of H^+
 - and an increase in pH

normal pH $7,40 \pm 0,04 (7,36 – 7,44)$

- increased concentration of H^+
 pH $< 7,36$ acidosis
 pH $< 7,0$ leads to death

- decreased concentration of H^+
 pH $> 7,44$ alkalosis
 pH $> 7,8$ leads to death
- Abnormalities in pH may be caused by

 - **metabolic** disorders (metabolic acidosis, metabolic alkalosis)
 - **respiratory** disorders (respiratory acidosis, respiratory alkalosis)

- **Normal metabolism – production of acids predominates**

- In normal metabolic processes in the body 12,000 mmol/l H^+ are produced daily, that must be eliminated from the body

- Physical activity, diseases - even higher production of acids

- Exposure to alkaline substances is less frequent

 - Sources: diet (fruit, vegetables)
Chemical buffer systems
- substances present in body fluids that bind acids or bases, thus neutralising them
- react immediately (seconds) and correct changes of pH
- keep the ions tied temporarily until the balance is reestablished
- do not eliminate H^+ from the body
- limited capacity – can be exhausted
- can be reestablished (e.g. by involving of physiological mechanisms)

Regulatory mechanisms of acid-base balance

1. Chemical buffer systems

2. Physiological mechanisms
- activated in increased load (of acids / bases)
- eliminate excess acids/ bases from the body
 A/ respiratory system – quick response
 B/ kidney – delayed response (hours, days)
 - the most powerful system
- allow for regeneration of chemical buffers
1. The bicarbonate buffer system

- system consisting of a weak acid + its basic salt
- ability to tie H⁺ (if its concentration increases) or release H⁺ (if its concentration decreases) and thus minimize changes of pH
- total buffering capacity in human body 48 mmol/l

Chemical buffer system

- system consisting of a weak acid + its basic salt
- ability to tie H⁺ (if its concentration increases) or release H⁺ (if its concentration decreases) and thus minimize changes of pH
- total buffering capacity in human body 48 mmol/l

1. The bicarbonate buffer system

consists of 2 components (ratio 1:20)
- a weak acid
- bicarbonate salt

\[
\text{excess of } H^+ : \\
H_2CO_3 \leftrightarrow H^+ + HCO_3^- \\
\text{deficit of } H^+ : \\
H_2CO_3 \rightarrow H^+ + HCO_3^- \\
\]

- the most important buffering system
- half of the total buffering capacity (24 mmol/l)
- tightly cooperates with lungs and kidneys that eliminate excess of acids/bases (H⁺, HCO₃⁻, CO₂)
- main extracellular buffer, operates in erythrocytes
2. **Protein buffer** (buffering capacity 15 mmol/l)
- plasma proteins - amphoteric
 = ability to release or to bind H^+ ions according to pH
- acidic environment (i.e. excess of H^+) – combine with H^+
- alkaline environment (i.e. deficiency of H^+) – release H^+

3. **Hemoglobin buffer** (buffering capacity 7 mmol/l)
 deoxygenated Hb (basic) / oxygenated Hb (acidic)

 tissues
 • O₂ is released from oxy Hb, H^+ combines with deoxy Hb

 lung
 • O₂ combines with deoxy Hb, H^+ is released from oxy Hb
 • H^+ + HCO₃⁻ → H₂CO₃
 • H₂CO₃ → H₂O + CO₂ - eliminated in lungs

4. **The phosphate buffer system** (buffering capacity 2 mmol/l)
 HPO₄²⁻ + H⁺ → H₂PO₄⁻
 - low concentrations in plasma
 - main intracellular buffer, participates in regulation of pH of urine